

GE2215 Introduction to GIS

Dr. <u>Yan</u> Yingwei Department of Geography National University of Singapore

Week 1

Introduction to the Course and GIS

Slides for education purposes only

Outline of this lecture

- Self Introduction
- Introduction to the Course
- Introduction to GIS

About Myself

- Lecturer & Director, Taught Graduate/Continuing Education and Training programmes in Applied GIS, Department of Geography, National University of Singapore
- Email: <u>yingwei.yan@nus.edu.sg</u>
- Research Interests:
 - Volunteered geographic information
 - Crowdsourcing
 - Data quality
 - Computational social science

- Ng Diane Tan Ting <u>diane.ngtt@u.nus.edu</u>
- Han Baoyan <u>baoyanhan@u.nus.edu</u>
- Xu Dong <u>xu.dong@u.nus.edu</u>

Outline of this lecture

- Self Introduction
- Introduction to the Course
- Introduction to GIS

Introduction to this Course

- Course Description
- Components
- Syllabus and Schedule
- Assessment
- Reading List
- Policies

Course Description

• This course covers the development and basic principles of Geographic Information Systems (GIS), and practical experience in the use of these systems

Course Description

• This course is designed as "learning through practicing", so a large emphasis is placed on practical GIS laboratory exercises.

• This course is designed for students throughout NUS with interests in GIS applications in environmental sciences, social sciences, regional planning, real estate, engineering, and business analysis.

Course Description

- This course aims to introduce students the fundamental concepts and components of Geographic Information Systems (GIS).
 - Fundamental concepts covered include spatial data models, data quality, cartographic principles, and spatial analysis (not limited to these aspects).

• It is one of the fundamental courses of the GIS Minor Programme.

Components: Lectures

• Lecture Sessions

Lecture 1: Introduction to GIS
Lecture 2: GIS Data Model – Vector Data Model
Lecture 3: GIS Data Model – Raster Data Model
Lecture 4: GIS Data Visualization and Spatial Representation
Lecture 5: Spatial Reference and Coordinate Systems
Lecture 6: Geometric Transformation

Syllabus is subject to changes. Please check Canvas for weekly activities and the latest updates

Components: Lectures

• Lecture Sessions

Lecture 7: Spatial Data Quality and Spatial Data Editing
Lecture 8: Spatial Database and Attribute Data Management
Lecture 9: Vector Data Analysis
Lecture 10: Raster Data Analysis
Lecture 11: Spatial Statistics
Lecture 12: TBA/Course Conclusion and Q&A

The lecture material will be uploaded to Canvas before each lecture session

Components: Lab

Lab exercises (starting from Week 3)
Lab 1: Introduction to ArcGIS Pro
Lab 2: Geo-visualization
Lab 3: Geometric Transformation
Lab 4: Geodatabase Development and Spatial Editing
Lab 5: Vector Analysis and Raster Analysis Functions

- Please contact Dr. Benny Chin Wei Chien wcchin@nus.edu.sg for ArcGIS Pro licenses (after week 1).
- GIS exercises (with an individual marked assignment) will be assigned for each lab.

The Lab material will be uploaded to Canvas before each lab session

• Multiple Choice Questions + Written questions (closed book)

Syllabus and Schedule

- Lecture Venue: LT10
- Lecture Time: Every week, Monday 10am-12n
- Lab Venue: GIS Lab (AS2 #03-13)
- Lab Time: Odd weeks (1 hour 35 mins for each group),
 - Monday: L1(4-6pm)
 - Tuesday: L2(10am-12n); L3(2-4pm); L4(4-6pm)

Syllabus and Schedule

Refer Canvas

Syllabus is subject to changes. Please check Canvas for weekly activities and the latest updates

- The Assessment includes "Participation", "Lab" and "Final Exam"
 - The "Participation" assessment task is worth 10% and will be based on the level of attendance
 - The "Lab" assessment tasks will comprise four lab exercises and assignments (60% in total)
 - The "Final Exam" assessment is worth 30%

• Chang, K.-T. (2018). *Introduction to Geographic Information Systems* (9th Edition). McGraw-Hill Education.

Introduction to geographic information systems by <u>Chang, Kang-tsung</u>

2016, Eighth edition.

Book AVAILABLE, G70.212 Cha 2016, Yale-NUS College Library Books +1 More ~

Slides for education purposes only

2 99 🖬 🖬 …

• McHaffie, P., Hwang, S., & Follett, C. (2023). *GIS: an introduction to mapping technologies*. CRC Press.

ŝ

Share

66 Citation

Book

An Introduction to Mapping Technologies, Second Edition

By Patrick McHaffie, Sungsoon Hwang, Cassie Follett

Edition	2nd Edition
First Published	2023
eBook Published	29 May 2023
Pub. Location	Boca Raton
Imprint	CRC Press
DOI	<u>https://doi- org.libproxy1.nus.edu.sg/10.1201/9781003307181</u>
Pages	316
eBook ISBN	9781003307181
Subjects	Built Environment, Earth Sciences, Engineering & Technology, Environment and Sustainability, Geography, Social Sciences, Urban Studies

DOWNLOAD	READ ONLINE
Size: 228.29 MB	
o purchase a print versio	on of this book for personal
se or request an inspect	tion copy »
se or request an inspect	tion copy ≫
se or request an inspect	cion copy ≫
GO TO ROUTLEDGE	ion copy ≫ .COM
se or request an inspect	iton copy »
e or request an inspect	ion copy »

- Longley, P. A., Goodchild, M. F., Maquire, D. J., & Rhind, D. W. (2015). *Geographic Information Science and Systems (4th Edition)*. John Wiley & Sons Inc.
- Others:
 - GIS Geography
 - **GIS Dictionary**
 - Esri Academy
 - Geography Realm
 - ArcGIS Pro quick-start tutorials
 - Introducing ArcGIS Pro
 - <u>History of GIS</u>
 - **QGIS** Tutorials
 - Refer to Canvas for more throughout the semester

- The lab assignments that you submit must be your OWN work. Copying others' files for submission is forbidden. See here for NUS Code of Student Conduct
 - (https://studentconduct.nus.edu.sg/administrative-policies/).

Rules on plagiarism

- The University takes a serious view of plagiarism.
- The URL here (<u>https://libguides.nus.edu.sg/new2nus/acadintegrity#s-lib-ctab-22144949</u>) includes (refer to the different tabs):
 - Guidelines to avoid plagiarism
 - Library E-Resources Usage
 - Copyright and Open Content
 - AI Tools: General Message to Students
 - AI Tools: Guidelines on Use in Academic Works
 - If you have general queries on any of these guidelines, please contact <u>askalib@nus.edu.sg</u>
 - If you have any doubts about how they may apply to your course, please seek clarification with your course instructor or supervisor

- Late submission of assignments will receive a mark deduction. No submission will be accepted seven days after the due day. You are responsible for submitting the final correct file Canvas. Submission of wrong files will NOT be accepted as an excuse for a late submission.
- If there is any question regarding the marks that you receive for your lab assignment, please speak to the lecturer in charge and your TAs. This must be done within one week after the assignment is returned to you.
- Please check your NUS email regularly for any update regarding the course.

- Please follow the GIS Lab usage rules. There is absolutely NO food and drinks in the GIS lab, except for bottled water. Violation will result in access suspension.
- We will consider requests for absence (before lab/lecture) or extensions (before due date) due to special circumstances on a case-by-case basis, but please do not count on such requests for granted.

Outline of this lecture

- Self Introduction
- Introduction to the Course
- Introduction to GIS

No

Introduction to GIS

- What is Geographic Information System (GIS)?
- Components of GIS
- Capabilities of GIS
- Applications and prospects of GIS

GIS Is Being Applied Around the World

Across Many Disciplines, Professions, and Organizations

Why study GIS?

Becoming an Instrument of Evolution

Source: Esri

30

Information

What is Geographic Information System (GIS)?

GIS is focused on location-based information

Information is the expression of events, things and phenomenon by means of texts, numbers, symbols, languages and pictures. It is the reflection of features of things in the objective world.

Texts, numbers, symbols, languages, pictures...

Expression and reflection of events and phenomena.

Decision basis of production, construction, operation and

Slides for education purposes only

Earth's rotation and

revolution

Characteristics of Information

• It reflects the status and mode of objects

• It can adjust to different application situations

Sharing

Apply to different situations

• Can be transmitted in various ways

Transmitted via network • Has the feature of spreading

Information sharing

Slides for education purposes only

Geographic Information

Difference between General Info and Geographic Info: Geographic info contains location information (lat-long coord.)

Attribute features

Geographic Information is the general term that represents various elements of **geographic** system such as **quantity**, **quality**, **distribution features**, **interrelationships**, and **changing rules**, and is carried by **texts**, **numbers**, **images**

and graphs.

Geographic phenomenon

Distribution features

60 - 50 - 40 - 30 -	*	1	4	×	~	+	1	^	b -	7	\checkmark	/
20 -												
10 -												
0 -											,	
	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2003	2000

Temporal features

Spatial-temporal patterns

ılv

Characteristics of Geographic Information

Large data volume Geographic information has spatial features, attribute features and versions at different times, thus resulting in large data volume

Uneven distribution

Densely distributed in some areas, while sparsely distributed in other areas.

Complexed topological relations • Some complexed spatial relations are needed to be represented, e.g., the representation of urban overpass

Slides for education purposes only

Characteristics of Geographic Information

Multiattribute

• The same phenomenon could have multiple attribute features. Geographical phenomenon may overlap. There can be building data, human activity data, etc. (multiple layers of

Multi-scale

 Representations of geographical data may vary at multiple scales
 At street level scale vs country level scale (E.g. MRT station locations)

Multi-source

• Paper map, measured data, test data, remote sensing data...

data)

Reflected by shape, direction, color, texture

Slides for education purposes only

Geographic Information System (GIS) is based on the spatial database, and adopts geographic analysis models to implement the collection, storage, retrieval, analysis, display, forecast, and update of **geographic information**

What is Geographic Information System (GIS)?

Introduction to GIS

- What is Geographic Information System (GIS)?
- Components of GIS
- Capabilities of GIS
- Applications and prospects of GIS

Hardware

Hardware includes computer systems (server, workstation, PC), GPS receiver, digitizer, scanner, printer, plotting instrument, etc.

Server

Workstation

- Computers that are used for managing resources and offering service to client terminals. They are expected to have high **stability**, **security** and **performance**
- High-class **microcomputers**. They are expected to have high performance in **graphic processing** and **parallel processing**
- Small portable personal computers, e.g., iPad, Surface

82.03648

Hardware

Input Devices

....

GPS receiver

Output Devices

Digitizer

Printer

Scanner

Plotting instrument

Software

GIS software includes source code and user interfaces

Source can be written by C++, Python, Java and other programming languages to implement various GIS functions.

User interfaces include menu, icons, command lines and scripts

Some popular GIS software

GIS workload ratio: Hardware: Software: Data = 1:2:7

The key function of GIS is to integrate **spatial data** with **other data** for comprehensive applications

٠

People

Academic researcher

- Focus on basic theories and methodologies of GIS

Project manager

- Need to coordinate on project developing procedures

Responsible for GIS
data processing

Software designer

• Need to work out solutions based on user requirements

System developer

Responsible for programing implementation

Which career path do you like most?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

Infrastructure

It is the physical, organizational, administrative and cultural environment that is required for the maintenance of GIS system

Work environment

Enterprise culture

Relevant laws and regulations

Data standards

Introduction to GIS

- What is Geographic Information System (GIS)?
- Components of GIS
- Capabilities of GIS
- Applications and prospects of GIS

Data collection

Data collection is to convert original geographic entities or materials into **digital forms that can be processed by computers**, and guarantee data in the GIS database being **complete** in contents and spatial forms and **consistent** in logic

Different kinds of data collections

Data processing

Modify the coordinate systems

Data transformation

Vector data

Raster data

Format transformation

Vector data

Raster data

Data storage

Point

Polyline

Geometric data storage

Polygon

Data management

Add to formula-best											
Attribute Auriction	Function name	Feature	Format	Return value	T						
Edit function	AREA	Set bounding (double Width,	nut	2						
Reference global variable	BOLD	Set or unset b	int Flag	riul	1						
Reference item	END_XVAL	Get X end coo	<item itemnz<="" td=""><td>double :</td><td>h</td></item>	double :	h						
Set global variable	END, YVAL	Get Y end coo	< bern ThemNe	double	1						
	FONT_SIZE	Set best fort i	double Point	nul							
	FONT_STYLE	Copy string at	item CopySou	nul	1						
	HALF_FONT_ID	Set half-width	int HalfWidthF	nut	Ē						
	Show all	+ Searc									

Organizing the structure of attribute data

GIS query Q \times \equiv NUS Japanese School of En Back to results veriny intro with this place Hours or services may differ due to COVID-19 Founded in 1905, an eminent Asian university with 3 campuses & 16 faculties. 21 Lower Kent Ridge Rd, Singapore 119077 NUS Scho S & Environ 7QWG+MH Singapore ... C D nus.edu.sa MYYOGA 6516 6666 Add a label Suggest an edit

Querying locations via attributes

Querying locations via spatial relations

Where are the restaurants near UTown?

GIS spatial analysis

Network analysis

- Where is the nearest restaurant from AS2? [Closest facility]
- What is the shortest path to Clementi Mall? [Best route]
- What is the response coverage for emergency vehicles in NUH? [Service area]

57

Capabilities of GIS

GIS spatial analysis

Overlay analysis

Land use change from 1987 to 2007

Data visualization

Choropleth mapping

Heat map visualization

3D visualization

GIS has many different visualization methods including 3D visualization

Introduction to GIS

- What is Geographic Information System (GIS)?
- Components of GIS
- Capabilities of GIS
- Applications and prospects of GIS

GIS is widely applied in many fields including land management, urban planning, transportation, environment, public health, humanity studies

Transportation Planning (Where to build a new railway?)

Fisheries and Ocean Industries

Forestry Mapping

Public Health

Meteorology

CISION AGRICCUI

SITE INFO

Disaster Management

Urban planning Sindes for education purposes only

The geographic inquiry process (from the book *Mapping Our World*, ESRI Press)

62

Applications and prospects of GIS

Source: https://www.onemap.gov.sg/main/v2/

Property Boundary & **Ownership**

Property ownership, registration of land titles and deeds. Approval of property boundary survey.

> Source: https://www.sla.gov.sg/ Slides for education purposes only

Source: https://www.ura.gov.sg/maps/?service=MP

Identifying the service

66

Applications and prospects of GIS

Source: <u>https://covidsitrep.moh.gov.sg/</u> (closed)

Dengue Clusters

Source: <u>https://www.nea.gov.sg/dengue-</u> zika/dengue/dengue-clusters)

Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (... Ξ Total Deaths Total Recovered **Total Confirmed** 4,368 66,216 3.046 deaths Hubei China Hubei China **Confirmed Cases by** 631 deaths Iran (Islamic Republic of) Country/Region 354 deaths China NORTH **Guangdong** China AMERICA Italy 54 deaths Republic of Korea Henan China Iran (Islamic Republic of) 47 deaths Spain **Zhejiang** China **Republic of Korea** 33 deaths **Spain** AFRICA France Hunan China 23 deaths France Washington US Anhui China Germany À M E RIC A 9 US Others Switzerland Japan Esri, FAO, NOAA Norway **Cumulative Confirmed Cases** Active Cases Mainland China Other Locations Country/Region St/Prov Lancet Inf Dis Article: Here. Mobile Version: Here. Visualization: JHU CSSE. Automation Support: Esri Living Total Recovered 118 Last Updated at (M/D/YYYY) Data sources: WHO, CDC, ECDC, NHC and DXY and local media reports. Read more in this Daily Cases 3/11/2020 8:13:05 下午 Actua Logarithmic

Slides for education purposes only

Humanity study

SINGAPORE HISTORICAL GIS

Spatial Distribution of Singapore Chinese Culture/新加坡华人文化空间分布

http://shgis.nus.edu.sg/

Meteorology

Source: http://www.weather.gov.sg/climate-historical-daily/

Historical Daily Records

Records will be updated by the 10th of the month

Daily Records

Location: Changi Jan 2023

Download as:CSV PDF

Date	Daily Rainfall Total (mm)	Highest 30-min Rainfall (mm)	Highest 60-min Rainfall (mm)	Highest 120-min Rainfall (mm)	Mean Temperature (°C)	Maximum Temperature (°C)	Minimum Temperature (°C)	Mean Wind Speed (km/h)	Max Wind Speed (km/h)
1 Jan	0.0	0.0	0.0	0.0	27.2	30.6	25.3	9.8	31.5
2 Jan	0.0	0.0	0.0	0.0	27.4	31.6	25.1	11.6	38.9
3 Jan	6.0	6.0	6.0	6.0	27.4	31.8	24.4	9.3	37.0

Disaster management

Damage assessment

What else do you think GIS can do?

- What is GIS?
 - What is information and geographic information? What are their characteristics?
- What are the basic components of GIS?
 - Five parts: hardware, software, data, people and infrastructure
- What are the capabilities of GIS?
 - Five aspects: data collection, processing and transformation, storage and management, query and spatial analysis, and visualization
- What are the applications and prospects of GIS?

THANK YOU