

GE2215 Week 13

Course conclusion Exam

Dr. <u>Yan</u> Yingwei Department of Geography National University of Singapore

Slides for education purpose only

Learning outcomes

- The familiarity with GIS concepts
- The skills of producing professional thematic maps with GIS software
- The ability to handle GIS data
- The capacity to run spatial analysis regarding GIS applications

Course review

4

The geospatial field

Geospatial Technology (GIS) and 4th Industrial revolution - YouTube

Slides for education purpose only

GIS learning path

GIS

GIS

GIS-related courses

GIS Courses

GE2215 - Introduction to GIS

GE3238 - GIS Design and Practices

GE3216 - Application of GIS and Remote Sensing

GE3252 - Cartography and Geovisualisation

GE4214 - Remote Sensing of Environment

GE4240 - Spatial Decision-Making

GE4241 - Spatial Health

GE5223 - Introduction to Applied GIS

GE5226 - GIS Applications

GE5219 - Spatial Programming

GE5225 - Thesis Planning and Implementation

GE5227 - Internet GIS

GE5228 - Spatial Big Data & Analytics

GE5230: Geospatial Statistics and Visualization (coming soon)

GE5231: Geospatial Machine Learning (coming soon)

GE6211 - Spatial Data Science

GE6225 - GIS Research Thesis

GE6226 - GIS Research Project

https://fass.nus.edu.sg/geog/undergraduatemodules/

https://fass.nus.edu.sg/geog/graduate-modules-allmodules/

https://fass.nus.edu.sg/geog/msc-in-applied-gis/

• • •

https://fass.nus.edu.sg/geog/msc-in-applied-gis/

Slides for education purpose only

7

Exam

WEDNESDAY 27 NOVEMBER 2024 5PM Students need to be present on campus for the final exam. For exam venue and seat number, please check EduRec about 1 week before the exams start

Take note

- Individual: 10 Multiple Choice Questions + 4 Written questions (closed book)
- Calculators are not needed. Calculators are not allowed.
 - There will be no questions about math, calculations, and algorithms.
 - However, you should understand concepts, the principles of the methods introduced in the lectures and think about their applications. Remember to check the URLs provided in the slides
- Exam venue will be informed by RO directly to you
- You will have to bring your matric card to the exam site. Mobile phones are also not allowed.

MCQ (testing your understanding of the content of the slides)

Q1: Lecture 2

- Basics of GIS data model
- Vector data model
- Compression of vector data
- Topological relations

Q2: Lecture 3

- Concept of the raster data model
- Elements of the raster data model

Q3: Lecture 4

- Types of maps
- Symbolization
- Classifying features

Q4: Lecture 5

• Map projections

Exam scope

Q5: Lecture 6

- Transformation method
- Control points
- Root Mean Square error
- Resampling (no need to remember the algorithms)

Q6: Lecture 7

Topological errors and editing

 Topology rules

Q7: Lecture 8

- Basics of attributes
- Insights into relational model

Q8: Lectures 2, 3, 9, and 11.

- Vector data and Vector overlay analysis
- Interpolation

Q9: Lecture 10

• Raster analysis functions

Q10: Lecture 11

- Point Pattern Analysis
- Spatial Autocorrelation

Written questions:

Q11 and Q 12: Vector and Raster data analysis (lectures 9 and 10 and lab 5)

- Testing your understanding of the analytic methods and their applications. No need to answer the stepby-step software operations, but you should familiarize yourself with the general workflows.
- Q13: Spatial Reference and Coordinate Systems
- Q14: No hint (take the challenge), but within the scope of the MCQs above.

Sample MCQs

1. Which of the following is not true? [Correct answer: ?]

(a) An earth ellipsoid approximates the shape and size of the earth.

(b) A geoid simplifies the true shape of the Earth's surface.

(c) A projected coordinate system must have a datum.

(d) The origin of a local datum adopts planar coordinates.

(e) SVY21 projected coordinate system adopts Transverse Mercator projection.

- 2. Topology alone can be used to _____. [Correct answer: ?]
 - (a) find the neighboring land parcels within a specific radius
 - (b) identify undershoots in a street layer
 - (c) find all the canteens in NUS
 - (d) All of the above
 - (e) (b) and (c)

Sample MCQs

1. Which of the following is not true? [Correct answer: d]

(a) An earth ellipsoid approximates the shape and size of the earth.

(b) A geoid simplifies the true shape of the Earth's surface.

(c) A projected coordinate system must have a datum.

(d) The origin of a local datum adopts planar coordinates.

(e) SVY21 projected coordinate system adopts Transverse Mercator projection.

- 2. Topology alone can be used to _____. [Correct answer: d]
 - (a) find the neighboring land parcels within a specific radius
 - (b) identify undershoots in a street layer
 - (c) find all the canteens in NUS
 - (d) All of the above
 - (e) (b) and (c)

A sample written question

• For creating a map of air temperature readings at the weather-station level in Singapore using GIS, which data model introduced in this course will you use? Why? Please also describe how to create such a map.

Just write concisely, no need long essay, no need to write step-bystep software operations

 $\underline{https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/understanding-interpolation-analysis.htm}$

Student Feedback Exercise: Your Voice Matters!

Provide your feedback now >>

https://blue.nus.edu.sg/blue/

Student Feedback Exercise: Your Voice Matters!

Be Constructive

Comments on your learning experience increase the value of your feedback.

Be Specific

Provide examples of how you think your teacher or the way the module is organised have helped (or not helped!) your learning.

Be Considerate

Improper language or personal comments are highly inappropriate, and undermine your feedback. Abusive comments are unacceptable.

Student Feedback Exercise: Your Voice Matters!

Your feedback counts

Your constructive feedback helps professors to improve their modules and is one source of evidence for the university's appraisal decisions.

It's confidential

Your professors will never see your name. They will only get an aggregate report after the exam results have been released.

It's quick

Complete your module feedback on campus, at home, or on the go! It is easy to use and mobile compatible.

Thank You! Good luck!