

# **GE2215 Lecture 8 Spatial Database and Attribute Data Management**

Dr. <u>Yan</u> Yingwei Department of Geography National University of Singapore





#### Recap: Data Quality and Spatial Data Editing

- Spatial data quality
  - The propose of spatial data quality problem
  - Reflection of spatial data quality
  - Causes of spatial data quality problem
  - Characteristics of spatial data quality problem
- Spatial data editing
  - Topological errors and editing
  - Non-topological editing



## Recap: Reflection of spatial data quality

- Location error
- Time error
- Attribute error



#### Recap: Causes of spatial data quality problem

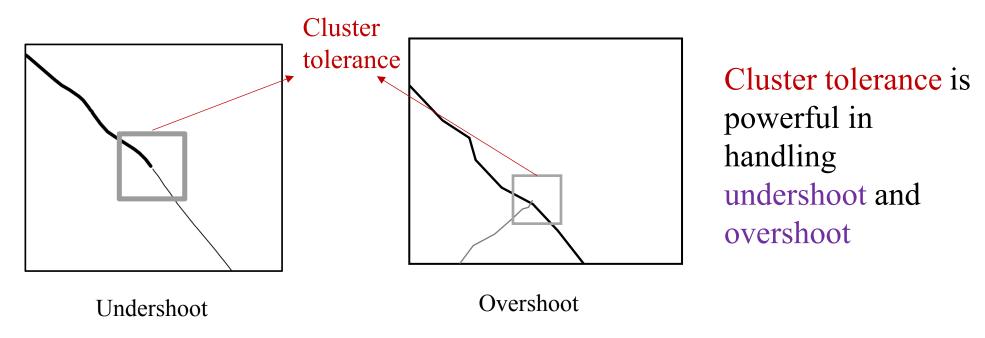
- 1. Multiple data sources
- 2. Data entry is not strict
- 3. Too much data
- 4. Data standards by different users
- 5. Different encoding methods
- 6. Different data access limit



#### Recap: Characteristics of spatial data quality

- Data accuracy and precision
  - What is data accuracy and data precision?
- Data uncertainty
  - Uncertainty of the real world itself
  - Uncertainty of the human cognition
- Data compatibility




# Recap: Topological errors

- **Topological errors** violate topological relationship rules
- **Topological relationship rules** can be defined by:
  - The data model (e.g., a polygon must be closed)
  - The users (e.g., highways across two states must connect perfectly)
- **Topological relationship rules** can be defined:
  - Within a feature class (point, polyline or polygon)
  - Between feature layers



#### Recap: Topological editing – Cluster Tolerance

- Cluster tolerance is powerful for topological editing
- Cluster tolerance, also called XY tolerance, is used to snap vertices if they fall within a square area specified by the tolerance

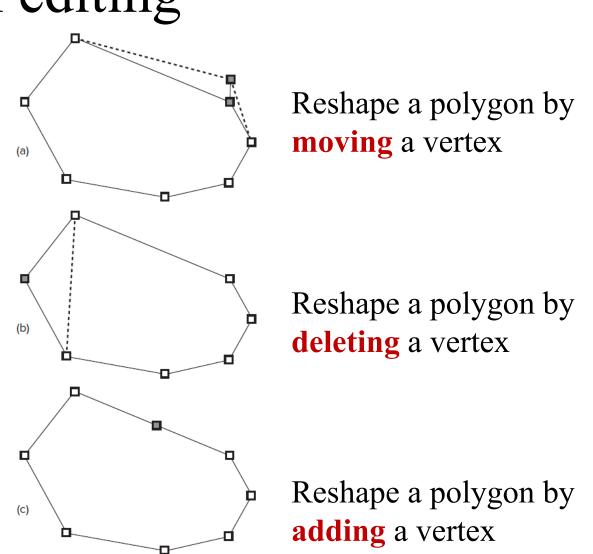




#### Recap: Topological editing – Topology Rules

- **Topology rules** can be defined based on only one feature class or between spatial layers
- The geodatabase has more than 30 topology rules
- How to use topology rules to correct topological errors
  - 1. Create a new topology by defining the participating feature classes, the ranks of each feature class, the topology rules, and a cluster tolerance
  - 2. Validation of topology. Identify errors that have violated the topology rules
  - **3.** Fix topological errors or accept them as exceptions (e.g., acceptable dangling nodes)



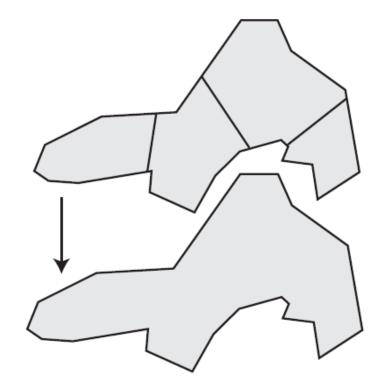

## Recap: Non-topological editing

- Non-topological editing
  - Does not involve **topology** as defined in a **map topology** or a **topology rule**
  - Modify existing features
  - Create new features from existing features



# Recap: Non-topological editing

- Modify existing features
  - Extend/trim lines
  - Delete/move features
  - Reshape features
  - Split lines and polygons






11

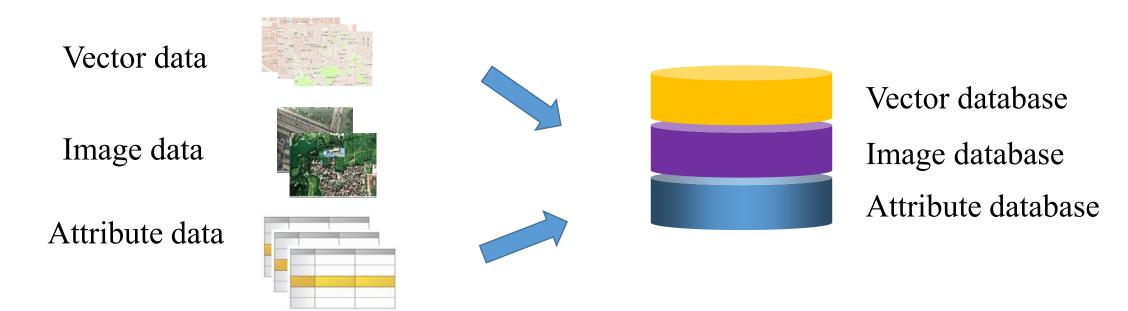
# Recap: Non-topological editing

- Create features from existing features
  - Merge features into one feature
  - Buffer features to create a buffer feature
  - Union features to combine features from the same layer
  - Intersect features to create a new feature



Merge four polygons into one




#### Outline of this lecture

- Basics of spatial database
- Basics of attributes
  - Types of attribute tables
  - Database management systems (DBMS)
  - Types of attribute data
- Insights into relational model



### What is spatial database

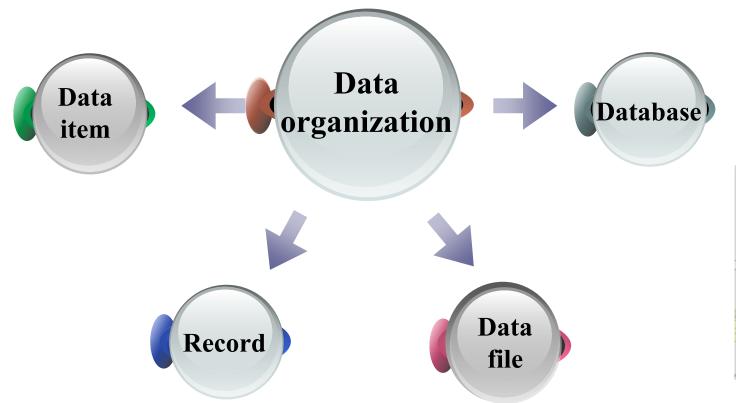
- Database: an integrated set of data on a particular subject, which is often used to store, and organize data
- Spatial (Geographic) database: database containing geographic data of a particular subject for a particular area





## Characteristics of spatial database

- Data is under centralized control
  - Can guarantee data sharing among different users and applications
  - Different from file management in which files are dispersed
- Data are independent
  - Database is independent of the application systems, and thus can be called by various application systems
- Data redundancy is small
  - Avoid repetitive data storage
  - Improve data usage efficiency




## Characteristics of spatial database

- Database has complex data model structure
  - The complex data model structure is used for data organization and data management
  - Vital difference from file management
- Database has the function of data protection
  - A password and permission for access must be set



#### Data organization



# **Data item**: the smallest unit in defining data

| 1   | Table                 |          |           |                                            |    |              |              |  |  |  |  |  |
|-----|-----------------------|----------|-----------|--------------------------------------------|----|--------------|--------------|--|--|--|--|--|
| 0   | 🗉 -   碧 -   幅 🚯 🖸 💩 🗙 |          |           |                                            |    |              |              |  |  |  |  |  |
| EI  | dercare               | _Centers |           |                                            |    |              |              |  |  |  |  |  |
|     | FID                   | Shape *  | Weightage | mx                                         | my |              |              |  |  |  |  |  |
| IP  | 0                     | Point    | 0         | NTUC Health Silver Circle (Jurono Central) | 20 | 15663.848054 | 37273.653125 |  |  |  |  |  |
| E   | 1                     | Point    | 0         | NTUC Health Silver Circle (Jurong West)    | 20 | 12419.923633 | 35967.877208 |  |  |  |  |  |
| IC  | 2                     | Point    | 0         | St Luke's ElderCare Jurong East Centre     | 20 | 16378.854313 | 36854.357065 |  |  |  |  |  |
| 10  | 3                     | Point    | 0         | NTUC Health SilverACE                      | 20 | 15722.954129 | 35294.181831 |  |  |  |  |  |
| 1   | 4                     | Point    | 0         | THK Seniors Services@ Taman Jurong         | 20 | 15665.841685 | 35582.224371 |  |  |  |  |  |
| IC  | 5                     | Point    | 0         | Silver circle/NTUC Health (Taman Jurong)   | 20 | 15266.487269 | 35724.816455 |  |  |  |  |  |
| IE  | 6                     | Point    | 0         | NTUC Health/Cluster Support                | 20 | 15451.099331 | 35350.043489 |  |  |  |  |  |
|     | 7                     |          |           |                                            |    |              |              |  |  |  |  |  |
|     | 8                     | Point    | 0         | Lakeside FSC Jurong East                   | 0  | 17006.024963 | 36309.095375 |  |  |  |  |  |
|     | 9                     | Point    | 0         | The Agape                                  | 0  | 15895.402695 | 34347.735379 |  |  |  |  |  |
| 1E  | 10                    | Point    | 0         | Loving Heart MSC                           | 0  | 16735.385903 | 36513.027974 |  |  |  |  |  |
| 1C  | 11                    | Point    | 0         | Boon Lay Wellness centre                   | 0  | 14850.530315 | 36492.748002 |  |  |  |  |  |
| IC. | 12                    | Point    | 0         | Yuhua SAC                                  | 0  | 16617.00105  | 36639.215635 |  |  |  |  |  |
| IC. | 13                    | Point    | 0         | Adventist Active Centre@Golden Peony       | 0  | 14898.918294 | 36676.519133 |  |  |  |  |  |
| 4   |                       |          |           |                                            |    |              |              |  |  |  |  |  |

#### Data organization is classified into four levels



### Data organization

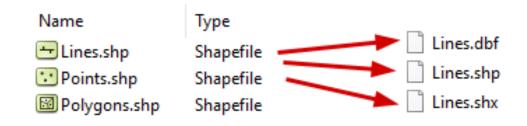
- **Record**: composed by several relevant data items about one entity
- Each row is a record

| Ta  | ble                                 |           |     |                                            |    |              |              |  |  |  |
|-----|-------------------------------------|-----------|-----|--------------------------------------------|----|--------------|--------------|--|--|--|
| 0   | -   <b>1</b>                        | a -   🍡 🦻 | ğ 🗹 |                                            |    |              |              |  |  |  |
| Eld | ercare                              | Centers   |     |                                            |    |              |              |  |  |  |
|     | FID Shape * Id Name Weightage mx my |           |     |                                            |    |              |              |  |  |  |
| Þ   | 0                                   | Point     | 0   | NTUC Health Silver Circle (Jurong Central) | 20 | 15663.848054 | 37273.653125 |  |  |  |
|     | 1                                   | Point     | 0   | NTUC Health Silver Circle (Jurong West)    | 20 | 12419.923633 | 35967.877208 |  |  |  |
|     | 2                                   | Point     | 0   | St Luke's ElderCare Jurong East Centre     | 20 | 16378.854313 | 36854.357065 |  |  |  |
|     | 3                                   | Point     | 0   | NTUC Health SilverACE                      | 20 | 15722.954129 | 35294.181831 |  |  |  |
|     | 4                                   | Point     | 0   | THK Seniors Services@ Taman Jurong         | 20 | 15665.841685 | 35582.224371 |  |  |  |
|     | 5                                   | Point     | 0   | Silver circle/NTUC Health (Taman Jurong)   | 20 | 15266.487269 | 35724.816455 |  |  |  |
|     | 6                                   | Point     | 0   | NTUC Health/Cluster Support                | 20 | 15451.099331 | 35350.043489 |  |  |  |
|     | 7                                   | Point     | 0   | Lakeside FSC Jurong West                   | 0  | 15467.095803 | 36413.090119 |  |  |  |
|     | 8                                   | Point     | 0   | Lakeside FSC Jurong East                   | 0  | 17006.024963 | 36309.095375 |  |  |  |
|     | 9                                   | Point     | 0   | The Agape                                  | 0  | 15895.402695 | 34347.735379 |  |  |  |
|     | 10                                  | Point     | 0   | Loving Heart MSC                           | 0  | 16735.385903 | 36513.027974 |  |  |  |
|     | 11                                  | Point     | 0   | Boon Lay Wellness centre                   | 0  | 14850.530315 | 36492.748002 |  |  |  |
|     | 12                                  | Point     | 0   | Yuhua SAC                                  | 0  | 16617.00105  | 36639.215635 |  |  |  |
|     | 13                                  | Point     | 0   | Adventist Active Centre@Golden Peony       | 0  | 14898.918294 | 36676.519133 |  |  |  |
|     |                                     |           |     |                                            |    |              |              |  |  |  |

#### • Keyword

A data item that can be used to identify and differentiate the current record from other records



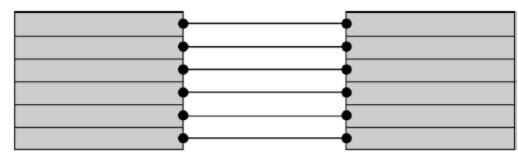

Which data item in the table on the left can be used as the **keyword**?

A column is also called a field

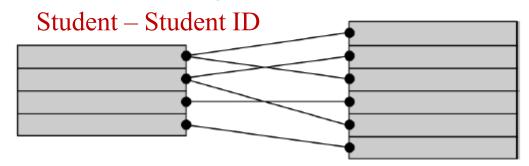


## Data organization

- File
  - A collection of the entire records
  - DBF file is the commonly used file format to record data tables
- Database
  - A collection of data with certain relevance
  - It is a collection of data files, which are dependent on each other and can not exist independently
  - .gdb is the geodatabase format in ArcGIS
  - PostgreSQL + PostGIS is used by QGIS

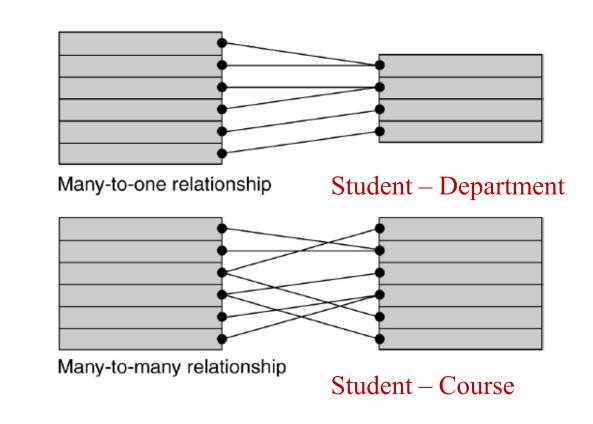





## Logical relation types

• Logical relations among data refer to the connection between records




One-to-one relationship



One-to-many relationship

State – County





#### Outline of this lecture

- Basics of spatial database
- Basics of attributes
  - Types of attribute tables
  - Database management systems (DBMS)
  - Types of attribute data
- Insights into relational model



## Types of attribute tables

- Feature attribute table
  - Has access to the feature geometry
  - Exist in every vector data set

|   | (          | DBJECTID * | SHAPE *  |   |            |
|---|------------|------------|----------|---|------------|
| ► | 1          |            | Point    |   |            |
|   | OBJECTID * |            | SHAPE *  |   | SHAPE_Len  |
|   | 1          |            | Polyline |   | 115.981163 |
|   | _          |            | _        |   |            |
|   | OBJECTID   |            | SHAPE *  | Ι | SHAPE_Len  |
|   |            | 1          | Polygon  |   | 130.759493 |
|   |            |            |          |   |            |

- How is the feature geometry stored in feature attribute table?
  - Stored in a field in the feature attribute table (Object-based data model)
  - Linked by the feature ID (Georelational data model)



## Types of attribute tables

- Non-spatial attribute table
  - Does not have direct access to the feature geometry
  - Has a field linking the table to the feature attribute table when necessary
  - Contains general information
  - Delimited txt, dBASE files, Excel, Access...

|   | OBJECTID * | CNTRY_NA     | SOVEREIGN    | ISO_3_COD | y_2004   |
|---|------------|--------------|--------------|-----------|----------|
|   | 8          | Singapore    | Singapore    | SGP       | 6.601    |
|   | 4          | Lao People's | Lao People's | LA0       | 23.1     |
|   | 6          | Myanmar      | Myanmar      | MMR       | 29.57    |
|   | 1          | Brunei Darus | Brunei Darus | BRN       | 60.226   |
|   | 2          | Cambodia     | Cambodia     | KHM       | 70.42    |
|   | 10         | Viet Nam     | Viet Nam     | VNM       | 241      |
|   | 5          | Malaysia     | Malaysia     | MYS       | 1128.543 |
| ► | 9          | Thailand     | Thailand     | THA       | 1358.32  |
|   | 7          | Philippines  | Philippines  | PHL       | 1389.81  |
|   | 3          | Indonesia    | Indonesia    | IDN       | 3925.47  |

## Database management systems (DBMS)

- Database management system (DBMS)
  - A system to manage tables
  - A software package that enables people to build and manipulate a database

PostgreSQL

PostGIS

- Most GIS packages include DBMS tools for local databases
  - Microsoft Access is used by ArcGIS
  - PostgreSQL + PostGIS is used by QGIS
- Not only used in GIS applications but also used in other information system



### Database management systems (DBMS)

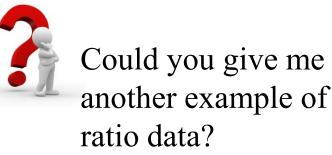
#### • Functions of DBMS

- File handling and file management
- Adding/deleting/updating records
- Provides tools for data input, search, retrieval, manipulation, output
- Maintaining data security



• Method I – Classifying by data type

– Number


- Integer (short int or long int) (e.g., 1234)
- Float (e.g., 1.234)
- Double (e.g., 1.79769313486232E308)
- Text (or string) (e.g., abcd)
- Date (e.g., 03/01/2016)
- -Binary large object (blob): A collection of binary data stored as a single entity
  - images, audio, multimedia, and feature geometries as long sequences of binary numbers
    Slides for education purpose only



- Method II Classifying by measurement scale
  - Nominal data
    - Describes different categories of data, e.g., land-use types, soil types
  - Ordinal data
    - Differentiate data by a ranking relationship
    - E.g., Severe moderate light soil erosion, low moderate high risk



- Method II Classifying by measurement scale
  - Interval data
    - Have known intervals between values (can represent values below zero)
    - E.g., temperature, elevation
  - -Ratio data
    - Similar with interval data, but are based on an absolute zero value (never fall below zero)
    - E.g., population density, crime rate





- Cell values of **raster** data
  - Categorical
    - Include nominal and ordinal data
  - Numeric
    - Include interval and ratio data



#### Outline of this lecture

- Basics of spatial database
- Basics of attributes
  - Types of attribute tables
  - Database management systems (DBMS)
  - Types of attribute data
- Insights into relational model



## Four types of databases

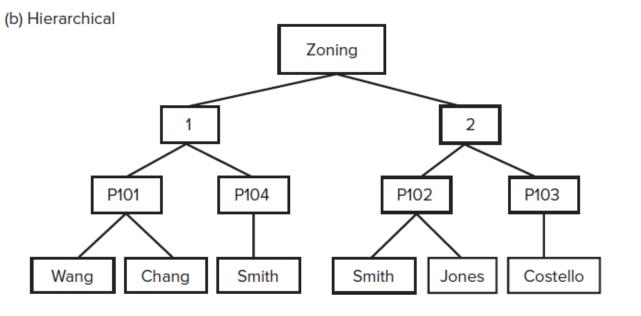
- A flat file
- Hierarchical database
- Network database
- Relational database



#### A flat file

- A flat file
  - A flat file contains all data in a large table
  - A feature attribute table is like a flat file
  - The spreadsheet with attribute data only

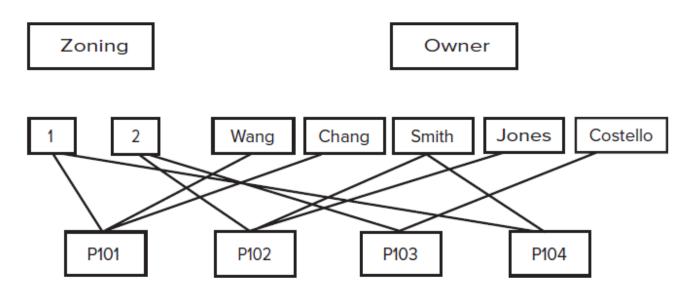
(a) Flat file


| PIN  | Owner    | Zoning          |
|------|----------|-----------------|
| P101 | Wang     | Residential (1) |
| P101 | Chang    | Residential (1) |
| P102 | Smith    | Commercial (2)  |
| P102 | Jones    | Commercial (2)  |
| P103 | Costello | Commercial (2)  |
| P104 | Smith    | Residential (1) |



#### Hierarchical database

- A hierarchical database
  - It organizes its data at different levels
  - It uses one-to-many association between levels
  - Each level is divided into different branches


| PIN  | Owner    | Zoning          |  |  |
|------|----------|-----------------|--|--|
| P101 | Wang     | Residential (1) |  |  |
| P101 | Chang    | Residential (1) |  |  |
| P102 | Smith    | Commercial (2)  |  |  |
| P102 | Jones    | Commercial (2)  |  |  |
| P103 | Costello | Commercial (2)  |  |  |
| P104 | Smith    | Residential (1) |  |  |





#### Network database

- A network database
  - It builds connections across tables
  - Many-to-many association between levels



| PIN  | Owner    | Zoning          |  |  |
|------|----------|-----------------|--|--|
| P101 | Wang     | Residential (1) |  |  |
| P101 | Chang    | Residential (1) |  |  |
| P102 | Smith    | Commercial (2)  |  |  |
| P102 | Jones    | Commercial (2)  |  |  |
| P103 | Costello | Commercial (2)  |  |  |
| P104 | Smith    | Residential (1) |  |  |



#### Relational database

- A relational database
  - It is a collection of tables, also called relations
  - The tables are connected to each other by keys
  - A primary key: represents one or more attributes whose values can uniquely identify a record in a table
  - A foreign key: is one or more attributes that refer to a primary key in another table



| elat   | ional    | l databa        | ase   | Pı      |            |      | rimary key Foreign key |          |  |
|--------|----------|-----------------|-------|---------|------------|------|------------------------|----------|--|
|        |          |                 |       |         |            | PIN  | Zone co                | ode      |  |
| Zani   |          | Own             | or l  |         |            | P101 | 1                      |          |  |
| Zoni   | ng<br>K  |                 |       |         | Parcel     | P102 | 2                      |          |  |
|        |          |                 |       |         | table /    | P103 | 2                      |          |  |
| Key: Z | onecode  | Key: PIN        |       |         |            |      | 1                      |          |  |
|        |          | Parcel          | Fo    | reign l | key 📕      | Prim | ary key                |          |  |
| PIN    | Owner    | Zoning          |       | PIN     | Owner name |      | Zone                   | table    |  |
| P101   | Wang     | Residential (1) |       | P101    | Wang       | Г    | 7                      | 7        |  |
| P101   | Chang    | Residential (1) | Owner | P101    | Chang      |      | Zone code              | Zoning   |  |
| P102   | Smith    | Commercial (2)  |       | P102    | Smith      | -    | 1                      | Resident |  |
| P102   | Jones    | Commercial (2)  | table | P102    | Jones      | L    | 2                      | Commerc  |  |
| P103   | Costello | Commercial (2)  |       | P103    | Costello   |      |                        |          |  |
| P104   | Smith    | Residential (1) |       | P104    | Smith      |      |                        |          |  |



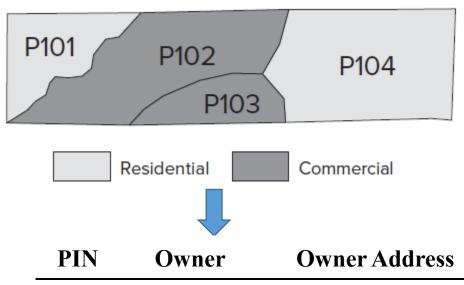
#### Relational database

- Advantages of relational database
  - 1. Each table in the database can be prepared, maintained, and edited separately from other tables
    - This is important as more GIS data are being recorded and added
  - 2. The tables can remain separate until a query or an analysis requires that attribute data from different tables be linked together, which is favorable to both data management and data processing



# ArcGIS Geodatabase & PostgreSQL + PostGIS

- GIS data
  - Spatial data
  - Attribute data
- Adopt the relational database
- Link the two components and integrates both spatial and attribute data into a single database
- The linkage ensures GIS to be capable of handling feature geometries and the spatial relationships between features




# Normalization: Preparing a relational database (optional – for your interest)

- Normalization is the process of decomposition, taking a table with all the attribute data, and breaking it down into small tables while maintaining the necessary linkages between them
- Objectives of normalization:
  - To avoid redundant data
  - To ensure that attribute data in separate tables can be maintained and updated separately and can be linked whenever necessary
  - To facilitate a distributed database



# An unnormalized table



- The map shows four land parcels with the PINs of P101, P102, P103, P104
- Two parcels are zoned residential, and two others commercial

| PIN  | Owner    | <b>Owner Address</b> | Sale Date | Acres | Zone Code | Zoning      |
|------|----------|----------------------|-----------|-------|-----------|-------------|
| P101 | Wang     | 101 Oak St           | 1-10-98   | 1.0   | 1         | Residential |
|      | Chang    | 200 Maple St         |           |       |           |             |
| P102 | Smith    | 300 Spruce Rd        | 10-6-68   | 3.0   | 2         | Commercial  |
|      | Jones    | 105 Ash St           |           |       |           |             |
| P103 | Costello | 206 Elm St           | 3-7-97    | 2.5   | 2         | Commercial  |
| P104 | Smith    | 300 Spruce Rd        | 7-30-78   | 1.0   | 1         | Residential |



## Normalization: Step 1 – fill empty cells

| PIN  | Owner    | <b>Owner Address</b> | Sale Date | Acres | Zone Code | Zoning      |
|------|----------|----------------------|-----------|-------|-----------|-------------|
| P101 | Wang     | 101 Oak St           | 1-10-98   | 1.0   | 1         | Residential |
| P101 | Chang    | 200 Maple St         | 1-10-98   | 1.0   | 1         | Residential |
| P102 | Smith    | 300 Spruce Rd        | 10-6-68   | 3.0   | 2         | Commercial  |
| P102 | Jones    | 105 Ash St           | 10-6-68   | 3.0   | 2         | Commercial  |
| P103 | Costello | 206 Elm St           | 3-7-97    | 2.5   | 2         | Commercial  |
| P104 | Smith    | 300 Spruce Rd        | 7-30-78   | 1.0   | 1         | Residential |

- Step 1 fills the empty cells, and each cell has one value
- But the problem of data redundancy has increased



# Step 2 – decompose the larger table

| Primary key    |                    |         |     |          |                |             |
|----------------|--------------------|---------|-----|----------|----------------|-------------|
|                | PIN                | Sale da | ite | Acres    | Zone code      | Zoning      |
|                | P101               | 1-10-98 |     | 1.0      | 1              | Residential |
| Parcel table   | P102               | 10-6-68 | 3   | 3.0      | 2              | Commercial  |
|                | P103               | 3-7-97  |     | 2.5      | 2              | Commercial  |
|                | P104               | 7-30-78 | 8   | 1.0      | 1              | Residential |
| Fore           |                    |         |     |          | <b>D</b> ensie |             |
| Fore           | ign key            | PIN     | Ow  | ner name | Foreig         | пкеу        |
|                |                    | P101    |     | Wang     | ]              | Primary key |
|                |                    | P101    |     | Chang    | ]              |             |
| <b>Owner</b> ( | <b>Owner table</b> |         |     | Smith    | ]              |             |
|                |                    | P102    |     | Jones    | 1              |             |
|                |                    | P103    | (   | Costello | 1              |             |
|                |                    | P104    |     | Smith    | 1              |             |
|                |                    |         |     |          | -              |             |

- Step 2 decomposes the larger table into three small tables
- There is data redundancy with the fields of zone code and zoning

### ddress table

| Owner name | Owner address |  |
|------------|---------------|--|
| Wang       | 101 Oak St    |  |
| Chang      | 200 Maple St  |  |
| Jones      | 105 Ash St    |  |
| Smith      | 300 Spruce Rd |  |
| Costello   | 206 Elm St    |  |



# Step 3 – further decomposition

|   | PIN  | Sale date | Acres | Zone code | Zoning      |
|---|------|-----------|-------|-----------|-------------|
| e | P101 | 1-10-98   | 1.0   | 1         | Residential |
|   | P102 | 10-6-68   | 3.0   | 2         | Commercial  |
| • | P103 | 3-7-97    | 2.5   | 2         | Commercial  |
|   | P104 | 7-30-78   | 1.0   | 1         | Residential |

# • Step 3 further decomposes the parcel table into smaller tables

#### Parcel table

|   |      |           |       | •         |
|---|------|-----------|-------|-----------|
| [ | PIN  | Sale date | Acres | Zone code |
|   | P101 | 1-10-98   | 1.0   | 1         |
|   | P102 | 10-6-68   | 3.0   | 2         |
|   | P103 | 3-7-97    | 2.5   | 2         |
| [ | P104 | 7-30-78   | 1.0   | 1         |



| Zone code | Zoning     |  |  |  |  |
|-----------|------------|--|--|--|--|
| 1         | Residentia |  |  |  |  |
|           |            |  |  |  |  |

Commercial

The process repeats until none of the tables can be further decomposed



# Table join

• A join operation brings together two tables by using a common field or a primary key and a foreign key

| Origin | table |
|--------|-------|
|--------|-------|

| PIN  | Sale date | Acres | Zone code |
|------|-----------|-------|-----------|
| P101 | 1-10-98   | 1.0   | 1         |
| P102 | 10-6-68   | 3.0   | 2         |
| P103 | 3-7-97    | 2.5   | 2         |
| P104 | 7-30-78   | 1.0   | 1         |

### **Destination table**

| Zone code | Zoning      |
|-----------|-------------|
| 1         | Residential |
| 2         | Commercial  |

Table join: 1:1 or M:1



# Table relate

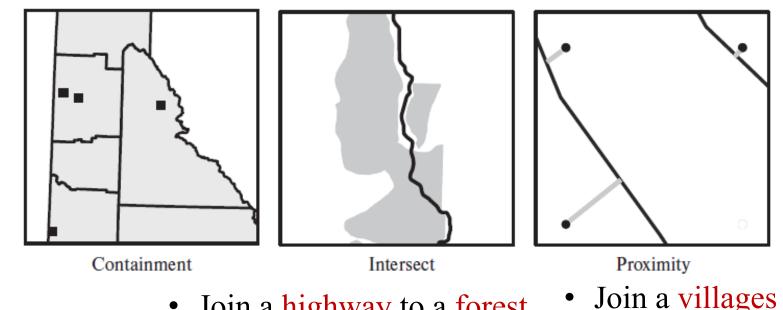
- A relate operation temporarily connects two tables but keeps the tables physically separate
- Does not append the date from one table to another
- Three or more tables can be simultaneously connected
- Support all relationships

### **Parcel table**

| PIN  | Sale date | Acres | Zone code | Zoning      |
|------|-----------|-------|-----------|-------------|
| P101 | 1-10-98   | 1.0   | 1         | Residential |
| P102 | 10-6-68   | 3.0   | 2         | Commercial  |
| P103 | 3-7-97    | 2.5   | 2         | Commercial  |
| P104 | 7-30-78   | 1.0   | 1         | Residential |

### **O**wner table

|      | -          |
|------|------------|
| PIN  | Owner name |
| P101 | Wang       |
| P101 | Chang      |
| P102 | Smith      |
| P102 | Jones      |
| P103 | Costello   |
| P104 | Smith      |


### **Address table**

| Owner name | Owner address |
|------------|---------------|
| Wang       | 101 Oak St    |
| Chang      | 200 Maple St  |
| Jones      | 105 Ash St    |
| Smith      | 300 Spruce Rd |
| Costello   | 206 Elm St    |



### Spatial join Read this: https://storymaps.arcgis.com/stories/85f6170907de460ea7bec930a1b3f748

- A spatial join uses a spatial relationship to join two sets of spatial features and their attribute data
- Join a school to a county in which the school is located



- Join a highway to a forest area by which the highway is intersected
- Join a villages to a fault line which the village is closest to



- Basics of spatial database
  - What is database and what is spatial database?
  - Five characteristics of spatial database
  - Four levels of data organization
  - Four types of relation types



- Basics of attributes
  - Types of attribute tables
    - Feature attribute table and non-spatial attribute table
  - Database management systems (DBMS)
    - Functions of DBMS
  - Types of attribute data
    - Classifying by data type: number, text, date, BLOB
    - Classifying by measurement scale: nominal, ordinal, interval, ratio



- Insights into relation model
  - Four types of database
  - Relational database and its advantages
  - Table join, table relate, spatial join



### **THANK YOU**